Arithmetic Progressions in Sumsets and L-almost-periodicity

نویسندگان

  • ERNIE CROOT
  • IZABELLA LABA
  • OLOF SISASK
چکیده

We prove results about the L-almost-periodicity of convolutions. One of these follows from a simple but rather general lemma about approximating a sum of functions in L, and gives a very short proof of a theorem of Green that if A and B are subsets of {1, . . . , N} of sizes αN and βN then A + B contains an arithmetic progression of length at least exp ( c(αβ logN) − log logN ) . Another almost-periodicity result improves this bound for densities decreasing with N : we show that under the above hypotheses the sumset A+B contains an arithmetic progression of length at least exp ( c ( α logN log 2β−1 )1/2 − log(β−1 logN) ) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 M ar 2 01 1 ARITHMETIC PROGRESSIONS IN SUMSETS AND L p - ALMOST - PERIODICITY

We prove results about the L-almost-periodicity of convolutions. One of these follows from a simple but rather general lemma about approximating a sum of functions in L, and gives a very short proof of a theorem of Green that if A and B are subsets of {1, . . . , N} of sizes αN and βN then A + B contains an arithmetic progression of length at least exp ( c(αβ logN) − log logN ) . Another almost...

متن کامل

John-type Theorems for Generalized Arithmetic Progressions and Iterated Sumsets

A classical theorem of Fritz John allows one to describe a convex body, up to constants, as an ellipsoid. In this article we establish similar descriptions for generalized (i.e. multidimensional) arithmetic progressions in terms of proper (i.e. collision-free) generalized arithmetic progressions, in both torsion-free and torsion settings. We also obtain a similar characterization of iterated su...

متن کامل

A Probabilistic Technique for Finding Almost-periods in Additive Combinatorics

We introduce a new probabilistic technique for finding ‘almost-periods’ of convolutions of subsets of finite groups. This allows us to give probabilistic proofs of two classical results in additive combinatorics: Roth’s theorem on three-term arithmetic progressions and the existence of long arithmetic progressions in sumsets A+B in Zp. The bounds we obtain for these results are not the best one...

متن کامل

ARITHMETIC PROGRESSIONS IN SPARSE SUMSETS Dedicated to Ron Graham on the occasion of his 70 birthday

In this paper we show that sumsets A + B of finite sets A and B of integers, must contain long arithmetic progressions. The methods we use are completely elementary, in contrast to other works, which often rely on harmonic analysis.

متن کامل

Arithmetic Progressions in Sparse Sumsets

In this paper we show that sumsets A + B of finite sets A and B of integers, must contain long arithmetic progressions. The methods we use are completely elementary, in contrast to other works, which often rely on harmonic analysis. –Dedicated to Ron Graham on the occasion of his 70 birthday

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011